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SUMMARY

Over the last years, agricultural experimenters have shown increased interest in
geostatistical methods. Geostatistical methods provide the opportunity to take into account
spatial dependencies between plots in experiments. The spherical or the exponential model
is often used to describe the dependence. Originally, however, these models were developed
however, for point data. In agricultural field experiments, the data mostly result from
transects or plots which are laid out on grids in the x-y plane. Transect or plot data arise by
regularization of point data. Assuming the spherical and the exponential model (with
isotropy and anisotropy, with and without nugget) as the initial models, we investigate the
covariogram functions and their characteristic parameters for different regularizations in part
I of this paper. Because explicit expressions for the resulting covariance functions can be
specified only as an exception, we made use of simulations. The calculations were
performed in both the x- and y-directions as well as omnidirectionally. Except for isotropic
initial covariograms and quadratic plots, the regularized covariograms show anisotropy in all
cases and are generally characterized by a sigmoid shape. In the second part of this paper
which will appear in the next issue of the Biometrical Letters, the theoretical results will be
confronted with those from uniformity trials.
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1. Introduction

It is generally accepted that covariances exist in agricultural field experiments
between neighbouring plots. Covariances arise from the competition of plants for
above-ground and below-ground resources on the one hand, and from similar soil
and other environmental effects of adjacent plots on the other hand. As to the
grain yield, Wiebe (1935) has already pointed to the existence of positive,
decreasing with increasing distance, correlations between plots. The principle of
randomization is the classic approach taken in order to overcome (“to neutralize”
—Zimmerman and Harville, 1991) correlated errors (Yates (1938)). In conjunction
with the arrangement in blocks (Fisher, 1935), it is the most established method in
field experiments to date. In the standard linear model, these two basic principles
(randomization and blocking) result in uncorrelated observations (fixed blocks) or
observations with constant correlations (random blocks) within blocks. The
positive effects of blocking and randomization (unbiased estimates of treatment
differences and reduced error variability) depend on a correct assessment of soil
heterogeneity.

At the same time other concepts for considering spatial dependence were
pursued - the so-called nearest-neighbour methods. They were presented by
Papadakis (1937) and Bartlett (1938). These methods were primarily developed
heuristically. They used residuals of neighbouring plots as ‘covariates’ to allow
for local fertility effects.

At the end of the sixties, doubts arose as to whether the necessary information
for the proper layout of experiments in blocks is given in all cases, and the
question came up of how to handle misjudgements of heterogeneity. This led to a
renewal of the ideas of Papadakis and Bartlett. The statistical background was
elaborated by trying to overcome some statistical deficits of the original method
and of derived concepts. However, none of the concepts became accepted as a
common school of thought for the analysis of experiments.

Geostatistical methods might be another approach to overcoming the problem
described. In recent years they have gained the interest of agricultural
experimenters. Whereas the nearest- neighbour methods indirectly take spatial
effects into account, the geostatistical methods model the spatial dependence
directly. The geostatistical approach has been discussed by several authors, e.g. to
analyze uniformity trials (Zimmerman and Harville, 1991), regarding its use in
the planning phase (Ersbgll, 1996) as well as in the analysis of accomplished
designed experiments with many treatments (Brownie et al., 1993; Stroup et al.,
1994; Littell et al., 1996; Stroup, 2002).

The philosophical background of the different schools of thought for data
modelling of field experiments is discussed by Schabenberger and Pierce (2002).
It can be expected that discussion of the advantages and disadvantages of the
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different approaches will intensify over the course of the next years. With the
mixed model theory and the corresponding software implementation, important
preconditions are met for a broader use of geostatistical methods for designed
experiments.

The mathematical tool used to describe the dependence or independence of
regionalized data is the covariance or the semivariance function. In case of second
order stationarity, both functions are equivalent instruments. While in original
geostatistical applications - problems of evaluating mining deposits - it is often
sufficient to assume the intrinsic hypothesis, we will focus on the covariance
function, i.e. we assume second order stationarity, since in conjunction with
mixed model theory the estimation of covariances is at the centre of attention.

The often-used covariance or semivariance models — the spherical and
exponential model with and without nugget - are originally those for point data.
The term point data means that they have a punctual support. A punctual support
(infinitely small support) is only an idealization that does not exist in reality; it is
obviously a relative term. Data which come from a higher-dimensional support -
one dimension (core, transect), two dimensions (plot, block) or three dimensions
(volume) - are called regularized data. In field experiments, as well as in mining,
one is often interested in semivariance / covariance functions for regularized data.
In mining geostatistics, it is well known that the regularization changes the
characteristics of the semivariance functions. Many authors deal with this
problem. In contrast, one finds in the literature about geostatistics in agricultural
field experiments that the spherical or exponential model is often used for data
from higher dimensional supports. The question is whether these simple models
provide a really sufficient fit in this field or rather if the effect of regularization
should be taken into account.

In this paper we will focus on the relations between the covariograms of point
and regularized data. By way of an example, we consider the spherical and
exponential model for point data. The known results of mining geostatistics will
be used. Moreover, the special layout of agricultural experiments and the possible
omnidirectional calculation will be taken into account.

In the following we denote the point data by P or 1x1, transect data by 1xL or
Lx1 and plot data by axb.

Let Covp(h) be the covariance function of point data and Corrp(h) the
corresponding correlation function. For the isotropic spherical model with nugget
variance, Covp(h) is



52 Ch. Richter, B. Kroschewski

C0+C if h=0
3
Cov,(h)=4C- 1—3£+l(£) O<h<A
2 A 21\A
0 if h>A

and for the isotropic exponential model with nugget variance:

C,+C if h=0
Cov,(h) = (2)

-h

C.e* ifh>0

with h distance, Cy nugget variance, C partial sill, C + C sill, A range and A*
range parameter.

The correlation function Corrp(h) is equal to ®*®). .., for each model.

For h = 3-A* the covariance of the exponential model is equal to 0.05-C. This
distance is often denoted as the practical range of the exponential model. In case
of an existing nugget, it seems reasonable to denote that distance as the practical
range, where Corrp(h) = 0.05. This is fulfilled for h = —A *-10g{0.05(1+C,/C)} . Both
distances are equal in the case of no nugget. The quotient 0<% ., <1 gives the
proportion of spatial structure PSS.

2. Introductory example and derived problems

At first, we will consider the one-dimensional extension of the support. In
mining, two forms of this regularization are observed: regularization by samples
within a core and the regularization over constant thickness (Rendu, 1981). In
Figure 1, the two forms are illustrated in the x-y plane. The analysis of cores in
mining corresponds to that of transects in agricultural applications.

The transects may have length L. If they are oriented in the y-direction (as in
Fig. 1), we use the abbreviation 1xL, for the orientation in the x-direction (parallel
to the x-axis) we write Lx1.
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Fig. 1: Two forms of one-dimensional regularization in the xy-plane: regularization by samples

within a core (a) and regularization over constant thickness (b).

Let Corr),(h) be the regularized correlation function for 1xL transects.
For demonstration we use the exponential model without nugget (Co = 0). In
the y-direction (Fig. 1, a), Corr 5. (h) is the solution of the double integrals in (3):

—

Corr,™ (h) =<

hhtl  —(yl-y) =(y-yD h+L  —(yl-y)
He A* dy1dy+j e A dyl+ [e A dylldy if h<L
0

y

3)
Lhtl —(yl-y)
e~ dyrdy if h>L
O h

In this case an explicit solution is possible and is given in (4). Journel and

Huijbregts

Corrlfg_’ir (h) =+

(1978) have given
semivariogram,

the expression for the corresponding

A —(h+L) -h h-L
|:2L 2h+ A*.e A" _DA¥*.eA” L A¥.e A* :’ if h<L
4
A [ L L ch
(T] -[e"* +eA* —2]~e"* if h>L
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In most situations, no analytical solution of the integrals exists and numerical
integration is necessary. E.g. to get the solution for the isotropic case in the x-
direction (Fig. 1, b), (5) must be numerically solved.

' 2 L —Jhi+a?
Cort:"(h) = F-J(L——u)‘e A du 5)
0

For h = 0, the values of (4) and (5) are equal to (6) which is the mean correlation
Corr,,,, of the points in 1xL (cf. Rendu, 1981, for the standardized
semivariogram).

— A [ 2L
COITIXL(O)ZCOITM L 22[—EJ 'l:eA +E_1j| (6)

Figure 2 shows the exponential isotropic point correlogram for A* = 10 and C, =
0 as well as the corresponding regularized correlograms from (4) and (5) for 1xL
= 1x15.

1 T T T
0.8 -1
point data
i ().6*-‘\:- ]
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s
sk ‘,“ / y-direction _
|C01T PinleI ‘A‘ -
\e
02 N . =
x-direction
A4 o 1
M) 15 30 45 éo
=L h

Fig. 2: Exponential isotropic correlograms for point data Corrp (h) and for regularized data
Corr . (h) in two directions (A* = 10, Cy =0, 1xL = 1x15)

For a given h > 0, the correlations in the y-direction are larger than those for
the x-direction. This can be illustrated as follows: Let h = L = 15. In the y-
direction the midpoints of the two transects have the distance L, and the mean
distance between all points of the first and the second transect is equal to L as
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well (Fig. 1, a). In the x-direction all points of the first transect have only one
point in the second transect with the distance L, for all other point pairs the
distance is larger than L, so that the mean distance is larger than L (Fig. 1, b).
Larger distances are followed by smaller correlations, so that the values in the y-
direction are higher than those for the x-direction.

If the transects are assumed not to be overlapping, an empirical covariogram in
the y-direction can only be calculated for h =0, L, 2L, 3L.... (bold dots in Fig. 2).
In this direction the practical range is approximately

, A*? | L L
pract. range} ;™" = 3. A*+A*.In Sl er +er -2 ||,

that is =~ 31.8 in the example. In the x-direction with increasing L, the practical
range decreases: from 29.96 (=~ 3A*) for the point data to 29.36 for L = 15 (by

numerical integration of (5)). f T
In the y-direction a point of inflection can be noticed for h = A*-In\2e4* —1

=10.37 < L (i.e. in the non-observable region for non-overlapping transects) and
in the x-direction for h = 4.15 in the example.

The maximum difference between the two directional correlograms is a function
of A* and L. We calculated the maximum over all distances h = 0, L, 2L, 3L...
(observable distances in both directions) for different combinations of A* and L.
In Figure 3 this maximum is represented for A* = 1...15and L = 1...30. For L =
1.8-A* the maximum differences are generally the largest and equal to 0.0694. In
the example (A* =10, L = 15) the maximum is 0.068 (+ in figure 3) and it is
achieved for h = L (Fig. 2).

For isotropic point data and transects oriented in the x-direction (Lx1), the
above statements remain valid if the meaning of the x- and y-direction are
exchanged. It follows especially from (6), that Corry (0) = Corry,(0).

From Figure 2, (4), (5) and (6), the following conclusions can be drawn:
the regularized covariogram/correlogram depends on the direction of
regularization,
the shape of the regularized model changes in relation to the point model
(sigmoid shape).
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Fig. 3: Maximum differences between the two directional exponential isotropic correlograms as a
function of A* and L. The sign + represents the discussed example with A* = 10 and L = 15.

In addition to the discussed layout of transects, a combination of (a) and (b) in
Figure 1 is characteristic for agricultural applications. Moreover, the
regularization in two dimensions (plots) is of special interest (Fig. 4). For such a
layout, the calculation of covariograms is not only possible in the x- or y-direction
with a hither to implicitly assumed tolerance angle of 0°, but also in the x- and y-
direction and other selected directions with different tolerance angles or over all
directions (omnidirectional). The omnidirectional calculation is an analysis that is
very often used.

Therefore, in the following, we will focus on two questions:
1. What are the characteristics of a transect covariogram, which is calculated
omnidirectionally?
2. What holds for the omnidirectional covariogram of plots in relation to the
directional ones (in x- and y-direction with tolerance angle 0%?
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Fig. 4: Two forms of generalized regularized investigation: transects (a) and plots (b)

Due to the above mentioned difficulties in analytical integration (for plots,
quadruple integrals must be considered) and to additional complications by an
omnidirectional investigation, we approach the problem by means of simulations.
With PROC SIM2D of SAS release 9.1.3, we simulated 14, 400, 000 data points
for each of the variants in table 1 (1000 simulations on a grid 1x1 with dimension
120x120) and summarized them into transects and plots, which covered the whole
grid and did not overlap. On the basis of the simulations, the 1xL-transect
covariograms can then be calculated in x-direction for h = 0, 1...120 (we
restricted ourselves to 60) and in y-direction for h = 0, L, 2L ... 120 and vice
versa for Lx1-transects. For simulation defaults we chose some typical situations:
with and without nugget, isotropy and anisotropy combined with the spherical or
exponential model (table 1).

Table 1. Three simulation variants (1) to (3) with point data and one- and two-dimensional
regularizations analyzed.

. geometric anisotropy
isotropy

i i i tial
nuggets-ililpartxal spherical 1sotro;2'*e§p1(:)nent1al . exponen !
A=20 - Ax =10 Ay =15
(1) cf. introductory example 3)
transects
0+100 rectangular and transects

drsti transects in x- and y-direction
quadratic plots

2

50 + 50 - transects -
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3. Selected theoretical and simulation results
3.1 Transects - default (1) — no nugget, isotropy, spherical
For the default (1) from table 1 and different 1xL-transects, the omnidirectional
covariograms are demonstrated in figure 5 (a). The initial isotropy of the point

data results in an anisotropic omnidirectional covariogram for the transect data.

100

80 T

™ =11 = 1x8 oo 1x15 == -1x30.

60 | s,

‘N (a)
40 T~ .

20 SO

o~

80
<
70

1x10:| & y-direction # x-direction — omnidirectional
60 - | 10X 1:1 . ydirection & x-direction — omnidirectional

50
40 (b)
30 A
20 -

10

0 10 20 30 40 50 60

Fig. 5: Simulation default: isotropic, A = 20, Cy =0 and C = 100.
(a) Simulated omnidirectional spherical covariograms for point data (1x1) and for transect data.
(b) Omnidirectional as well as directional covariograms for 1x10 and 10x1.
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Be Coviy.(h) the regularized covariogram function of any model without nugget.
The regularized sill is given in (7)

sill, ; =Covpinix. =Cov,, (0)=C-Corr,, (0)=sill . -COIT pin 1 )

point

With increasing L, the correlation of the points in the transect is decreasing. Thus
the sill of the regularized function becomes smaller the larger L is (c.p. figure 5).

In the spherical isotropic case, the mean covariance of the points in 1xL is

CoV pin1xL =3 (8)

(c.p. Rendu, 1981, for the standardized semivariogram).
Because of isotropy, 1xL can be replaced by Lx1 in (7), (8) and in figure S (a).

It is remarkable that all graphs show jump discontinuities if h is an integral
multiple of L. This is explained in figure 5 (b) for 1xL = 1x10. For h < L = 10, the
omnidirectional covariogram is equal to the one in x-direction since for h < L
there is no transect in any other direction. Whenever the calculation in y-direction
is possible (for h = 10 and 20), the function jumps to higher values because the
covariance is higher in this direction (cp. fig. 2). For h > 30, all point pairs are
independent. As a consequence, the range in y-direction is equal to A + L (= 30)
whereas in x-direction it is A (= 20). In the interval 10 < h < 30, the
omnidirectional covariogram lies between the two directional ones.

The maximum difference between the two directional correlograms, calculated
over h =0, L, 2L, 3L..., is achieved for h = L. In figure 6 the maximum is
represented as dependent on A and L. For L = 0.82-A, the maximum differences
are generally the largest and equal to 0.122.
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Fig. 6: Maximum differences between the two directional spherical isotropic correlograms
as a function of A and L. + Example with A =20 and L = 10 (Figure 5).

3.2 Transects - default (2) — nugget, isotropy, exponential

For default (2) from table 1 as well as for different transect lengths, the
omnidirectional covariograms are demonstrated in figure 7. The same figures are
obtainable for Lx 1-transects.

In models with nugget variance, (7) must be modified into (9)

nugget point (9)

- Cotr pin 1. +

. C C S
sill,, =Cov,, (0)+ —L—f’- =C-Corr,, (0)+ f— = partial sill_,,, >

For Corrjy; (0), the relation (6) must be used in the exponential model. Again,
because of the isotropy, (9) is valid for Lx1-transects, too.
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Fig. 7: Omnidirectional exponential covariograms for point data (1x1) and for transect data —
simulation default: isotropic, A* = 10, Cy = 50 and C = 50.

With increasing transect length L, the nugget part %and Cov,,, (0) decrease,

however, the PSS increases (figure 7). For L — oo, the PSS goes to
2C- A*/(2C- A*+C,) (= 0.952 in the example). Here, the PSS increases from 0.5

for the point data over 0.88 for L = 10 and 0.932 for L = 30.

As in section 3.1, jump discontinuities are observable whenever h is an integral
multiple of L. However, in contrast to the spherical model, this is valid for h
without a limitation. In figure 7 the jumps are only observable for h =L.

Remark about the spherical model with nugget:
(9) is likewise valid for the spherical model with nugget. Here, Covy,y (0) is
given in (8), and for L — oo, the PSS goesto 3-C-A/(3-C-A+4C,).

3.3 Transects - default (3) — no nugget, anisotropy, exponential

When dealing with isotropic point data, the direction in which the transects are
formed has no effect on the omnidirectional covariogram. Addionally, the
directional covariograms for 1xL or Lx1 are exchangeable by changing the x- and
y-direction. In the anisotropic case, however, there are considerable differences.
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Therefore, at first we will highlight some differences to the mtroductory example
in chapter 2. Be A the range parameter in x-direction and A in y-direction.
Then, instead of (5), the correlation function for 1xL-transects in x -direction is

nea —}

Ax) Ay

‘ 2 E
Cort ™ (h) = R IL u)-e du
0

and for the y-direction, A* has to be replaced by A; in (4).

For the Lx1-transects and for the y-direction, the function is

- 'L.zﬂ(;‘%
COrrlf::“(h) = %'I]‘(L—u).e WJ { x] du
0

and for the x-direction, A* has to be replaced by A; in (4).

With (6), it follows that, unlike the isotropic case, Corr, (0) # Corry;(0).
If A, < A, then Corryyy (0) > Corry ; (0), and vice versa.

For the defaults (3) from table 1 and transects 1x8 and 8x1, the covariograms are
demonstrated in figure 8. Again, the directional covariograms are enveloping
curves for the ommdlrectlonal ones. It can be seen, that Corrj,g(0) is larger
then Corrg, (0) , because Ax is smaller than A

The anisotropy will be remforced if the transects are oriented in the direction of
the larger range parameter ( Al y ) (figure 8, a). In the other direction, the jumps are
damped (figure 8, b). The ma)ilmum difference between the two directional
correlograms is a function of A,, Ay and L as well as of the direction of the
transects. For A, =1...15,L =1...30 and A = const = 15 the results are given
in figure 9. In the above example, the max1mum difference between the
correlograms is 0.164 for 1x8, but only 0.116 for 8x1.
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Fig. 8: Simulation default: anisotropic, A y =15, A, =10,Cy=0and C=100.

63

Omnidirectional exponential covariograms for transect data with enveloping directional curves

- (a) 1x8 and (b) 8x1.
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Fig. 9: Maximum differences between the two directional exponential regularized correlograms as a
function of A: and L, A; = 15. + discussed example with A; =10and L =8.

3.4 Plots - default (1) — no nugget, isotropy, spherical

The above descriptions make plausible that similar results can be expected for
plots. Because the graphs are very similar to those of transects we will refrain
from presenting them here.

The reduction of the partial sill arises from the correlation within the plot. The
larger the plot is, the smaller the partial sill and the nugget variance are:

sill ., =Cov,,, (0) +;C.—‘;) =C-Corr,, (0)+ ;—‘{) = partial sill -Corr pin plot

point

point

a-b

nugget
+ ——

In the case of isotropic point data, only quadratic plots provide the same sigmoid
directional curves in both directions. In all other cases — isotropic point data and
rectangular plots or anisotropic point data and quadratic/rectangular plots —
regularization results in an anisotropy and in a model change compared to the
model of the point data.
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4. Summary of the simulation results and theoretical remarks

Independent of whether the point data follow the isotropic or anisotropic
exponential or spherical model, the directional covariograms of the transect data
show a sigmoid shape. For transects built up in y-direction, it is obvious that the
shape in x-direction is sigmoid because many points lie in this direction. In y-
direction, the values are the sparser the longer the non-overlapping transects
become. For a real experiment, it follows that the uncertainty of an appropriate
model choice is much higher in this direction. In principle, the same is true for
plots. For the smaller side length, more points exist so that the sigmoid shape in
this direction is much clearer than in the other.

For regularized data, it can be expected that an anisotropic model provides a
better fit. If, nevertheless, an isotropic model will be fitted, a model error can a
priori be expected. However, for isotropic point data, the maximal differences
between the regularized directional covariograms of the transects are not very
large. For the exponential model, the difference is at its maximum for L = 1.8-A*
and equal to C-0.068. For the spherical model, it is at its maximum for L = 0.82-A
and equal to C-0.122. This is probably often not recognized in real experiments
because other influences superimpose the effect of regularization.

If the point data are anisotropic and the larger range has the same direction as the
transects (resp. the larger dimension of the plots), the anisotropy is more
pronounced than if the transects were laid out in the other direction.

Whereas the changes of the nugget variance do not depend on the model of the
point data, changes of the partial sill and range / range parameter do. Both the
nugget variance and the partial sill decrease with an increasing length of transects
or the area of plots. Although the quotient of spatial structure does not
theoretically converge to 1, in real experiments one can expect that a model
without nugget variance gives a sufficient proper fit with increasing transect
length (plot size).
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CORRIGENDUM

Christel Richter, Birbel Kroschewski

Some considerations on the use of geostatistical methods in agricultural field trials.

Part I. From point to regularized data — theoretical considerations

The corrected Figure 1 (page 53) and Figure 8 (page 63) are shown below.

d = dimension of point data

Si<

l (a)

d = dimension of point data
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Fig. 1: Two forms of one-dimensional regularization in xy-plane: regularization by samples within
a core (a) and regularization over constant thickness (b).
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Fig. 8: Simulation default: anisotropic, Ay =15, Ax =10,Cy=0and C = 100.

Omnidirectional exponential covariograms for transect data with enveloping
directional curves — (a) 1x8 and (b) 8x1.



